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ABSTRACT

Image segmentation consists of recognizing the object in the
image and precisely delineating its spatial extent. We present
a model, called clouds, that exploits the synergism which
commonly exists between recognition and delineation for
more effective segmentation. The model can reduce user’s
intervention to simple corrections or even eliminate it alto-
gether, achieving high accuracy. We evaluate the method in
the task of 3D MR image segmentation of the brain in isolat-
ing automatically: brain without medulla and spinal cord; just
the cerebellum; and the brain hemispheres without medulla,
spinal cord, and cerebellum. These structures are connected
in several parts, which poses a serious challenge for simplis-
tic segmentation strategies. The entire process takes a few
seconds on modern PCs and provides accurate results. The
applications for clouds go beyond medical imaging, opening
new vistas in a variety of areas served by segmentation.

Index Terms— MR image segmentation, image forest-
ing transform, model-based and image-based segmentation,
graph-cut measures, medical image processing.

1. INTRODUCTION

Image segmentation involves effective object recognition and
delineation. Recognition is the task of determining an ob-
ject’s approximate whereabouts and location in the image.
Delineation completes segmentation by defining the precise
spatial extent of the object. Humans usually outperform com-
puters in object recognition, but reverse is true for delineation.
While the user can often solve the recognition problem by
a simple (seed) point selection or by an appropriate initial-
ization action, perfectly repeatable delineation is challenging
because of intra and inter operator subjectivity. On the other
hand, computers can perform repeatable delineation, but the
absence of global information makes computer recognition of
objects a difficult task. This explains why some successful
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interactive approaches combine recognition by the user with
delineation by the computer in a synergistic way, for more
effective and foolproof segmentation [1, 2].
Segmentation methods can be divided into model-based

and image-based approaches. Model-based methods cre-
ate statistical models by employing supervised learning. A
training set of images/objects is provided with appropriate
human interaction and these data are registered into a com-
mon reference space to form the model. Active shape mod-
els [3] (ASM) and atlas-based approaches [4] are examples
of model-based methods that have been used for MR image
segmentation of the anatomic structures of the brain [5, 6].
Accurate registration is a separate problem in these methods
which is also required for effective object recognition. In
ASM, landmarks have to be selected on the surface of the
training objects and their correspondence provides a statis-
tical model of possible variations in shape. The registration
between the image and the model is required for recognition.
Delineation sometimes ignores important image information,
by the act of forcing the results to fit with the model. Brain
atlases are usually created by registration of training images
based on certain landmarks and with no segmentation. In
the reference space, image structures suffer from different
degrees of distortion and the matching among corresponding
voxels is imprecise. However, a brain atlas can help in the
recognition task, leaving delineation for other approaches [6].
Image-based methods exploit image properties for more ef-
fective delineation, but their lapses in global information
makes recognition an insurmountable problem [7, 8]. In
order to reduce/eliminate the need for user intervention, it
is then important to combine recognition by model-based
approaches with delineation by effective image-based meth-
ods [9, 10].
From interactive segmentation strategies, we know that

the human operator plays the role of a model while the com-
puter performs delineation, and both operate in a synergistic
way. The hybrid approach presented in this paper, called
clouds, illustrates this strategy. Some advantages of this
method are: the model is very simple to create from a set
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of training objects; image registration can help, but it is not
essential either among training objects or for recognition; and
delineation can be done by any accurate image-basedmethod.
The next sections present the principles underlying clouds,
its application to MR image segmentation of the brain with
evaluation for several structures, and our conclusions.

2. THE CLOUDSMODEL

For a given structure of interest (e.g., cerebellum), a set of
training objects must be provided. These objects should cap-
ture among them shape variations of that structure in order to
teach the computer how to recognize it in the image. Instead
of registering them as in ASM, we only translate them onto a
common reference point (geometric center) and separate them
into groups (clusters) of high similarity in shape, rotation and
scale (texture may be used as well). In medical imaging and
other applications (e.g., license plate recognition), it is possi-
ble to acquire images as per a disciplined regimen so that a
small number of groups will suffice (one in many instances).
The average of the objects in each group creates (i) an

interior region consisting of voxels that belong to all objects
of the group, (ii) an exterior region with voxels that do not
belong to any object in the group, and (iii) an uncertainty re-
gion composed of voxels that belong to some but not to all
objects in the group. The fuzzy appearance of the resulting
image resembles a cloud (Figure 1a). The cloud model then
is a triple consisting of a set of clouds (one cloud per group),
a delineation algorithm (image-based approach), and a func-
tional. To segment a new image, each cloud moves over the
image and, for each position, delineation is done inside the
uncertainty region to obtain a candidate object. The func-
tional is evaluated to obtain a matching score for recognition,
by taking into account local and global object properties (e.g.,
shape and texture). The desired segmentation is expected to
be the one with maximum score among those obtained from
all clouds.

(a) (b)

Fig. 1. (a) A coronal slice of the 3D cloud of the cerebellum.
(b) The uncertainty region over a slice of a test image.

Note that delineation is constrained in the uncertainty
region, which is defined by the model, but the delineation

method exploits image properties according to the image-
based approach. Recognition is based on the functional, but it
is applied to the delineated objects. Thus, the model employs
recognition and delineation in a tightly coupled manner.

2.1. Model

An image Î is a pair (I, �I) where I ⊂ Zn is the im-
age domain and �I(p) assigns a set of m scalars Ii(p),
i = 1, 2, . . . , m, to each voxel p ∈ I. This definition ap-
plies to multi-dimensional and multi-parametric images. We
are interested in n = 3 andm ≥ 1. The subindex i is removed
whenm = 1. In a binary image Î , I(p) = 1 for object voxels
and I(p) = 0 for background voxels. The clouds are obtained
by grouping and averaging the training set of binary images,
with all objects translated to a fixed reference point (geomet-
ric center). The result is a cloud image Ĉ = (I, �C), where
Ci(p) ∈ [0, 1], i = 1, 2, . . . , m. For any cloud i, Ci(p) = 1
in its interior, 0 < Ci(p) < 1 in its uncertainty region, and
Ci(p) = 0 in its exterior. The cloud model consists of a cloud
image Ĉ , a delineation algorithmA, and a functional F .

2.2. Implementation

Many approaches can be taken for grouping objects into
clouds, for delineating candidate objects in a test image, and
for recognizing the desired object by a functional. The group-
ing can be done by mapping the training objects as nodes of
a complete graph, whose arcs between objects are weighted
by their similarity values. The similarity between objects can
be measured, for example, by Dice similarity. The graph can
be partitioned into maximal clicks (groups), where all pairs
of objects have similarity above a threshold. In this work, we
found that a single cloud is sufficient for each structure.
For delineation, we propose Algorithm 1 based on the

image foresting transform [11] (IFT). A 3D gradient image
Î = (I, I) is interpreted as a graph (I,A), whose nodes are
the voxels p ∈ I and the arcs (p, q) ∈ A are defined be-
tween 6-neighbors. The uncertainty region is a set U ⊂ I of
voxels (Figure 1b). The interior and exterior regions contain
boundary voxels, which have at least one voxel in U as a 6-
neighbor. These boundary voxels form one internal set Si and
one external set Se of seeds for the IFT. Each arc (p, q) ∈ A

is weighted by the mean gradient value I(p)+I(q)
2 . Any se-

quence of adjacent voxels forms a path and the cost of a path
is the maximum arc weight along it. It is expected that the
arc weights within U are higher on the object’s boundary than
inside and outside it. The seed sets Si and Se compete for
voxels in U , such that a voxel receives label L(p) = 0 if the
minimum-cost path from the seed sets comes from Se, and
label L(p) = 1 otherwise.
By centering U at each voxel of a search region, a score F

is obtained for each candidate object computed by the delin-
eation algorithm. As the boundary between voxels with label
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1 and voxels with label 0 represents a cut in the graph (I,A),
we propose to use the mean-cut measure [12] as functional
F . When U contains the object’s boundary (Figure 1b), we
expect the object to be defined by the union between the in-
terior of the cloud and the voxels with labels L(p) = 1 in
U .
Algorithm 1 performs delineation and functional compu-

tation simultaneously for any given image location. It can
take time proportional to the number of voxels in U (sublin-
ear), when the priority queue Q is implemented as suggested
in [1].

Algorithm 1 – DELINEATION ALGORITHM

INPUT: Gradient image Î, adjacency A, seed sets Si and
Se, and uncertainty region U .

OUTPUT: Label map L initially zeroed and mean cut F = 0
initially.

AUXILIARY: Cost map c initially zeroed, variables cst and cut
size sz = 0 initially, priority queue Q initially
empty, and status map s to indicate when a voxel
has been inserted inQ (1), has never been inserted
in Q (0), and has been removed from Q (2).

1. For all p ∈ U , set c(p)← +∞ and s(p)← 0.
2. For all p ∈ Si, set L(p)← 1, s(p)← 1, and insert p in Q.
3. For all p ∈ Se, set L(p)← 0, s(p)← 1, and insert p inQ.
4. While Q is not empty, do
5. Remove fromQ a voxel p such that c(p) is minimum.
6. Set s(p)← 2.
7. For each q such that (p, q) ∈ A, do
8. If c(q) > c(p), then
9. Compute cst← max{c(p), I(p)+I(q)

2
}.

10. If cst < c(q), then
11. If s(q) = 1, remove q from Q.
12. Set c(q)← cst, L(q)← L(p).
13. Insert q in Q and s(q)← 1.
14. Else
15. If s(q) = 2 and L(q) �= L(p), then
16. Set F ← F + I(p)+I(q)

2
.

17. Set sz ← sz + 1.
18. Set F ← F/sz.

Note that, before changing position of U , the maps and
auxiliary variables can be reinitialized in sublinear time, such
that the search for a desired object can be done more effi-
ciently.

3. APPLICATION TO BRAIN SEGMENTATION

The brain structures segmented in this work are: (S1) the
brain (GM + WM) without medulla and spinal cord, (S2)
the cerebral hemispheres without medulla, spinal cord, and
cerebellum, (S3) the cerebellum, (S4) the right hemisphere
without medulla, spinal cord, and cerebellum, and (S5) the
left hemisphere without medulla, spinal cord, and cerebellum.

Object Mean (%) Std dev (%) Time(s)
S1 96.95 0.55 18.7
S2 97.17 0.55 12.2
S3 93.13 1.20 1.9
S4 96.11 0.58 4.1
S5 96.02 0.59 4.1

Table 1. Mean times and mean and standard deviation of the
Dice similarity.

The CSF is eliminated by removing voxels below the Otsu’s
threshold computed in the original images. The hemispheres
are connected through the corpus callosum. The cerebellum
is connected to the rest of the brain through the spinal cord
and through its top due to partial volume. The absence of a
clear boundary between these structures poses a challenge for
segmentation.
Five clouds are created, one for each structure, by using

interactive segmentation based on differential IFTs [2]. The
MR-T1 images are interpolated to the same cubic dimensions
(0.98mm3) and aligned by the mid-sagittal plane [13] (MSP).
This approach is fast (a few seconds), free of parameters, and
independent of templates. Interpolation and alignment allow
a single cloud for each structure and the MSP reduces the
search region as follows. The center of U moves inside the
MSP to segment S1, S2, and S3. S4 and S5 are obtained
by reducing the search to the right and left sides of the MSP
within S2.
Our strategy for brain segmentation follows the pipeline

shown in Figure 2. First the method segments S1, then S2 is
separated from S3. Although S3 should be the residue of S1
minus S2, the method is repeated by constraining the search
into the intersection between this residue and the MSP, to de-
lineate S3 more independently of possible errors in S2. The
same happens when the method segments S4 and S5 on the
right and left sides of S2.
We also used a multiscale search to speed up the recogni-

tion task. A three-level Gaussian pyramid was computed. We
started the search at the lowest resolution and refined the best
detected locations in the higher resolutions.

4. RESULTS

We have evaluated the method on the MRI datasets of 18 nor-
mal subjects from both sexes, in the age range from 25 to
49 years. The images were acquired with a 2T Elscint scan-
ner and voxel size of 0.98 × 0.98 × 1.00 mm3. We used
the leave-one-out approach to compute the mean and stan-
dard deviation of the Dice similarity measure between the in-
teractive (ground truth) and automatic segmentation results,
and the mean execution times for each segmentation using a
3GHz Pentium IV PC. Table 1 shows that accurate results can
be obtained in a few seconds.
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Fig. 2. (a) The brain is extracted without medulla and spinal cord (S1), then (b) both hemispheres are extracted (S2). (c) The
cerebellum (S3) is obtained by constraining the search within the intersection of the MSP and the residue of S1 minus S2. (d)
The hemispheres S4 and S5 are separated from each other by constraining the search to the right and left sides of the MSP.

5. CONCLUSION

We introduced clouds, a new approach for synergistic image
segmentation, which weaves delineation and recognition as
tightly coupled tasks for more effective segmentation. The
method consists of a fuzzy shape model, a delineation algo-
rithm (image-based approach), and a functional. We imple-
mented it using an IFT algorithm for delineation and the mean
graph-cut measure as functional. The method was evaluated
in a difficult segmentation task involving brain structures in
MR-T1 images and presented highly accurate results obtained
within a few seconds per structure. Clouds seems to be a sim-
ple yet powerful model-based strategy that achieves automa-
tion in both recognition and delineation. Our future goals will
be to expand the purview of the model, to segment other GM
structures, and to carry out more extensive evaluation.
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